webleads-tracker

Home  >  NANOMATERIALS  > Researchers find a way to increase the efficiency of polymer...
  >  NANOMATERIALS TECHNO
Jan 7th, 2014
 
Researchers find a way to increase the efficiency of polymer solar cells
 
Researchers from North Carolina State University and the Chinese Academy of Sciences have found an easy way to modify the molecular structure of a polymer commonly used in solar cells. Their modification can increase solar cell efficiency by more than 30 percent.
Send to a friend
  • The modification of a polymer used in solar cells can increase solar cell efficiency by more than 30 percent.

Polymer-based solar cells have two domains, consisting of an electron acceptor and an electron donor material. Excitons are the energy particles created by solar cells when light is absorbed. In order to be harnessed effectively as an energy source, excitons must be able to travel quickly to the interface of the donor and acceptor domains and retain as much of the light’s energy as possible.

One way to increase solar cell efficiency is to adjust the difference between the highest occupied molecular orbit (HOMO) of the acceptor and lowest unoccupied molecular orbit (LUMO) levels of the polymer so that the exciton can be harvested with minimal loss. One of the most common ways to accomplish this is by adding a fluorine atom to the polymer’s molecular backbone, a difficult, multi-step process that can increase the solar cell’s performance, but has considerable material fabrication costs.

A team of chemists led by Jianhui Hou from the Chinese Academy of Sciences created a polymer known as PBT-OP from two commercially available monomers and one easily synthesized monomer.

PBT-OP was not only easier to make than other commonly used polymers, but a simple manipulation of its chemical structure gave it a lower HOMO level than had been seen in other polymers with the same molecular backbone. PBT-OP showed an open circuit voltage (the voltage available from a solar cell) value of 0.78 volts, a 36 percent increase over the ~ 0.6 volt average from similar polymers.

 

 
More NANOMATERIALS TECHNO news

Sep 5th
Sep 5th
Aug 25th
Aug 9th
Jun 27th
 
©2007 Yole Developpement All rights reserved                  Disclaimer | Legal notice | To advertise
Yole Développement: Le Quartz, 75 cours Emile Zola, 69100 Villeurbanne, France. TEL: (33) 472 83 01 80 FAX: (33) 472 83 01 83 E-Mail: info @yole.fr