webleads-tracker

Home  >  MEDTECH  > Better than X-rays: A more powerful terahertz imaging syste...
  >  MEDTECH
Apr 6th, 2013
 
Better than X-rays: A more powerful terahertz imaging system
 
Low-energy terahertz radiation could potentially enable doctors to see deep into tissues without the damaging effects of X-rays, or allow security guards to identify chemicals in a package without opening it.
Send to a friend
Engineering research team at the University of Michigan.
Engineering research team at the University of Michigan.

But it's been difficult for engineers to make powerful enough systems to accomplish these promising applications. Now an electrical engineering research team at the University of Michigan has developed a laser-powered terahertz source and detector system that transmits with 50 times more power and receives with 30 times more sensitivity than existing technologies. This offers 1,500 times more powerful systems for imaging and sensing applications. "With our higher-sensitivity terahertz system, you could see deeper into tissues or sense small quantities of illegal drugs and explosives from a farther distance. That's why it's important," said Mona Jarrahi, U-M assistant professor of electrical engineering and computer science and leader of the project.

Jarrahi's research team accomplished this by funneling the laser light to specifically selected locations near the device's electrode that feeds the antenna that transmits and receives the terahertz signal.

Their approach enables light to hitch a ride with free electrons on the surface of the metallic electrodes to form a class of surface waves called surface plasmon waves. By coupling the beam of light with surface plasmon waves, the researchers created a funnel to carry light into nanoscale regions near device electrodes.

The excited surface plasmon waves carry optical photons where they need to be much faster and much more efficiently, Jarrahi said.

"When you want to generate or detect terahertz radiation, you have to convert photons to electron hole pairs and then quickly drift them to the contact electrodes of the device. Any delay in this process will reduce the device efficiency," Jarrahi said. "We designed a structure so that when photons land, most of them appear to be right next to the contact electrodes."

According to Jarrahi, the output power of the terahertz sources and the sensitivity of the terahertz detectors can be increased even further by designing optical funnels with tighter focusing capabilities.

"This is a fantastic piece of engineering," said Ted Norris, U-M professor of electrical engineering and computer science. "It gets right to the central issue in photoconductive terahertz devices, which is collecting all the charge. Since every application benefits from increased sensitivity, for example, reduced data acquisition time or increased standoff distance, I expect this approach to be implemented widely."

Norris, an expert on terahertz technology, is director of the U-M Center for Photonic and Multiscale Nanomaterials.

Terahertz systems that are powered by lasers have been the most successful in the marketplace so far, thanks to the cost-effective, compact and high-power lasers available. Other researchers are using different approaches to powering terahertz systems, though.

The study, "Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes," is published in the current edition of Nature Communications.

In addition to Jarrahi, authors include: Christopher Berry and Ning Wang, U-M doctoral students in electrical engineering and computer science; and Mohammad Reza Hashemi and Mehmet Unlu, U-M postdoctoral researchers in electrical engineering and computer science.

The research was funded by the Michigan Space Grant Consortium, Defense Advanced Research Projects Agency, National Science Foundation, Office of Naval Research and Army Research Office.

About Michigan Engineering
The University of Michigan College of Engineering is one of the top engineering schools in the country. Nine of its eleven academic departments are ranked in the nation's top 10. At $190 million annually, its engineering research budget is one of largest of any public university. Its faculty and students are making a difference at the frontiers of fields as diverse as nanotechnology, climate science, healthcare, homeland security and robotics, and they are investigators on spacecraft across the solar system. Its entrepreneurial culture encourages faculty and students alike to move their innovations beyond the laboratory and into the real world. Its alumni base of nearly 70,000 spans the globe.

 

 
More MEDTECH news

Sep 16th
Sep 16th
Sep 12th
Sep 9th
Sep 8th
 
©2007 Yole Developpement All rights reserved                  Disclaimer | Legal notice | To advertise
Yole Développement: Le Quartz, 75 cours Emile Zola, 69100 Villeurbanne, France. TEL: (33) 472 83 01 80 FAX: (33) 472 83 01 83 E-Mail: info @yole.fr