webleads-tracker

Home  >  NANOMATERIALS  > Collecting light with artificial moth eyes ...
  >  NANOMATERIALS
Jun 25th, 2014
 
Collecting light with artificial moth eyes
 
All over the world researchers are investigating solar cells which imitate plant photosynthesis, using sunlight and water to create synthetic fuels such as hydrogen.
Send to a friend
How the "moth eye solar cell" is created, and how it collects light.
How the "moth eye solar cell" is created, and how it collects light.
  • Empa researchers have developed such a photoelectrochemical cell, recreating a moth’s eye to drastically increase its light collecting efficiency.

The cell is made of cheap raw materials – iron and tungsten oxide.
 
Rust – iron oxide – could revolutionise solar cell technology. This usually unwanted substance can be used to make photoelectrodes which split water and generate hydrogen.  Sunlight is thereby directly converted into valuable fuel rather than first being used to generate electricity. Unfortunately, as a raw material iron oxide has its limitations. Although it is unbelievably cheap and absorbs light in exactly the wavelength region where the sun emits the most energy, it conducts electricity very poorly and must therefore be used in the form of an extremely thin film in order for the water splitting technique to work. The disadvantage of this is that these thin-films absorb too little of the sunlight shining on the cell.
 
Empa researchers Florent Boudoire and Artur Braun have now succeeded in solving this problem. A special microstructure on the photoelectrode surface literally gathers in sunlight and does not let it out again. The basis for this innovative structure are tiny particles of tungsten oxide which, because of their saturated yellow colour, can also be used for photoelectrodes. The yellow microspheres are applied to an electrode and then covered with an extremely thin nanoscale layer of iron oxide. When external light falls on the particle it is internally reflected back and forth, till finally all the light is absorbed. All the entire energy in the beam is now available to use for splitting the water molecules.

In principle the newly conceived microstructure functions like the eye of a moth, explains Florent Boudoire. The eyes of these night active creatures need to collect as much light as possible to see in the dark, and also must reflect as little as possible to avoid detection and being eaten by their enemies. The microstructure of their eyes especially adapted to the appropriate wavelength of light. Empa's photocells take advantage of the same effect.

In order to recreate artificial moth eyes from metal oxide microspheres, Florent Boudoire sprays a sheet of glass with a suspension of plastic particles, each of which contains at its centre a drop of tungsten salt solution. The particles lie on the glass like a layer of marbles packed close to each other. The sheet is placed in an oven and heated, the plastic material burns away and each drop of salt solution is transformed into the required tungsten oxide microsphere. The next step is to spray the new structure with an iron salt solution and once again heat it in an oven.

 

 
More NANOMATERIALS news

Aug 25th
Aug 9th
Jun 27th
Jun 25th
May 29th
 
©2007 Yole Developpement All rights reserved                  Disclaimer | Legal notice | To advertise
Yole Développement: Le Quartz, 75 cours Emile Zola, 69100 Villeurbanne, France. TEL: (33) 472 83 01 80 FAX: (33) 472 83 01 83 E-Mail: info @yole.fr