webleads-tracker

Home  >  NANOMATERIALS  > Stevens Professor makes graphene-based inkjet-printed elect...
  >  NANOMATERIALS TECHNO
Dec 13th, 2011
 
Stevens Professor makes graphene-based inkjet-printed electronics
 
Dr. Woo Lee wins academic R&D award from Printed Electronics conference and tradeshow.
Send to a friend

Paper-thin cell phones, e-readers, and batteries are just over the horizon for consumers, thanks to a revolutionary, disruptive technology known as printed electronics. A combination of novel materials and cutting edge fabrication processes, printed electronics are revolutionizing the look, feel and use of computerized devices and are emerging as an estimated $300 billion market.

Along with partners in the Army and other researchers at Stevens Institute of Technology, Dr. Woo Lee – the George Meade Bond Professor in the Department of Chemical Engineering and Materials Science in the Schaefer School of Engineering and Science at Stevens – is advancing printed electronics through the recent demonstration of a method to inkjet print electrical energy storage devices using graphene. Made of carbon sheets one atom thick, graphene has quickly become a go-to material for the next-generation of nanoscale and microscale devices. Dr. Lee's team was recognized with the Academic R&D Award at Printed
Electronics USA 2011 for combining the potential of graphene with precision inkjet printing technologies.

"The printed graphene research conducted by Dr. Lee and his collaborators is destined to fundamentally change how low-cost, electronic consumer goods are produced in the future," said Dr. Michael Bruno, Dean of the Schaefer School of Engineering and Science. "Their work also demonstrates the sort of promising outcomes we have grown to expect from the long-running research relationship between the US Army and Stevens faculty."

Although a common artifact of the home or office, inkjet printers have also emerged as a scientific tool for depositing materials both precisely and efficiently. For his research, Dr. Lee's "ink" is a suspension of graphene oxide in water, which, after printing, is thermally reduced to produce graphene. The resulting material has useful characteristics including electrical conductivity, high surface area for energy storage, good mechanical strength to withstand everyday use, and transparent appearance.

Using an inkjet printer that can form and meticulously place graphene oxide droplets with a volume of 10 picoliters (1 x 10e-11 liters), Dr. Lee can realize graphene electrodes for the printed electronics industry.

"Our process allows us to print graphene droplets at a resolution down to around 50 micrometers," reported Dr. Lee. "Such precision inkjet-printing techniques require minimal handling of nanomaterials, generate very little wasted material, and can easily scale up by adapting our methods to commercial printers."

This is not Dr. Lee's first application of the inkjet printer. He currently receives funding from the National Science Foundation to investigate inkjet printing of drug-eluting micropatterns onto the surface of orthopedic implants. These biocompatible patterns of nanoparticles fight bacterial infection after orthopedic surgeries, a major cause for implant failure, and promote bone formation around new implants.

The research team includes: Dr. Lee, Stevens graduate students Linh Le, De Kong, and Yue Li; Dr. Matthew Ervin of the US Army Research Laboratory; and Dr. Brian Fuchs and James Zunino of US Army ARDEC. The collaborators received the Academic R&D Award at the Printed Electronics Awards dinner on Wednesday, November 30. Additionally, the group has submitted a joint US patent application for their work.

 

 
More NANOMATERIALS TECHNO news

Mar 31st
Mar 31st
Mar 14th
Mar 12th
Feb 7th
 
©2007 Yole Developpement All rights reserved                  Disclaimer | Legal notice | To advertise
Yole Développement: Le Quartz, 75 cours Emile Zola, 69100 Villeurbanne, France. TEL: (33) 472 83 01 80 FAX: (33) 472 83 01 83 E-Mail: info @yole.fr