The growing smartphone market, expected to reach almost $2.1 billion smartphones annually by 2022, represents a great opportunity for suppliers of different smartphone components and technology solutions.

Thermal management of handheld devices, such as smartphones, is becoming increasingly challenging. As detailed in the report, the main reasons for this are the growing number of smartphone functionalities and raised customer requirements for processing speed, leading to increased heat dissipation. Additional components needed to ensure new smartphone functions desired by customers, including wireless charging, high-resolution cameras, 3D gaming, security, authentication, and high-speed streaming, also result in denser component integration, making thermal management even more difficult.

Actually, smartphones contain several components that generate heat, and components whose performance and lifetime is negatively impacted by heat. Excessive heating of some components, such as lithium ion batteries, has to be avoided for safety reasons. The processor is the hottest component in a smartphone. Amongst other heat-generating components in a smartphone are image sensors, light sources and the battery.

Suitable thermal management solutions are now sought to avoid hot spots in smartphone and keep the component temperature at acceptable levels. The enclosure temperature, or skin temperature, must be also kept relatively low to avoid users feeling uncomfortable when using the smartphone.

Smartphones pose a significant challenge to the implementation of traditional cooling schemes, such as heat sinks and fans, due to form factor limitations and the specific way the device is used by customers. As detailed in the report, there are different approaches for thermal management, based both on hardware and software solutions. Software thermal management (STM) has several advantages. It enables additional
design flexibility and an optimal reaction to a given thermal event and can be improved by a software update in existing products. Contrary to hardware solutions, such as heat pipes, STM does not take additional space in smartphones.

The optimal way to deal with heat in smartphones would be to reduce heat generation, by using higher performance chips. Significant improvements have been made in chip manufacturing, with the 10 nm node introduced in 2016, and chip architectures, including multiple core architectures, with “high-power” and “low-power” cores, associated with appropriate software control. However, in the future, processor improvements might be not fast enough to follow rapidly elevating customer requirements for smartphone functionality and performance.

So other thermal management solutions will increasingly be needed. As shown in the report, similar trends were observed in the past, when thermal transfer sheet performance was not sufficient to dissipate heat from poorly thermally designed processors, leading to heat pipes being introduced into the first smartphones from NEC and Sony. Today, the Samsung Galaxy S8, LG G5, Google Pixel 2 XL are just a few examples of smartphones relying on heat pipes to improve their thermal management.

Alternatively, vapor chambers might perform better than heat pipes in the near future. Ultrathin vapor chambers are already under development by several players, such as Furukawa Electric, TaiSol, AVC and Delta, but still face difficult technology challenges.

Until recently, the thermal management in smartphones was only of minor interest to smartphone component and device designers. Beside some “dedicated” thermal management components like heat pipes and thermal transfer sheets, most smartphone components have been designed and built without thermal performance in mind.

According to Yole Développement’s analysis, this will greatly change in the future. A fierce battle for each mm³ of volume available in smartphones to implement components enabling new functionality and for larger batteries will lead to efforts to enhance thermal characteristics of existing smartphone components, instead of adding dedicated bulky thermal components.

Future efforts will be focused mainly at the packaging level, in chip packaging and Printed Circuit Boards (PCBs). These two solutions will account for more than ¼ of the $3.6 billion market for thermal components solutions by 2022. Fan-out packaging solutions and high-density thermally-enhanced PCBs will especially attract interest. Amongst other, leading PCB suppliers such as Mektec, Samsung Electro-Mechanics, AT&S and Unimicron, and leading packaging suppliers such as Amkor Technology, ASE, TSMC and STATS ChipPAC will take part in this spectacular thermal transition in smartphones. The integration of several functions into one component is another promising approach for future smartphones.

Despite cost barriers in the cost-sensitive smartphone industry environment, the huge quantities of thermal management components needed result in attractive market value. Moreover, new technology solutions add more product-differentiating value compared to their competitors and open market opportunities in other applications areas, such as medical, gaming, pico-projectors, virtual reality and drones.
Find all our reports on www.i-micronews.com

TABLE OF CONTENTS (complete content on i-Micronews.com)

Introduction 7
Executive summary 12
Global smartphone market trends 43
Thermal issues in smartphones 48
> Main reasons why a smartphone gets hot
> What are the main heat sources in a smartphone?
> Thermal management priority levels
> Thermal management solutions in smartphones
> Classification of thermal management solutions in a smartphone
> Different ways to deal with heat in a smartphone
> TM solutions at different packaging levels
> Synergies of TM for smartphones with other applications
Technology and market challenges 62
> Challenges to thermal management in smartphones
> Factors strengthening smartphone TM challenges
> Smartphone cooling system features sought
> Smartphones are getting slimmer and slimmer – or, are they?
Market forecast 71
> Methodology
> 2016-2022 smartphone market in Munits
> 2016-2022 smartphone market value in $ million
> Leading smartphone companies in 2016 – units sold per year
> Leading smartphone companies in 2016 – revenues
> Smartphone bill of materials in 2016
> Smartphone thermal management bill of materials in 2016 and 2022
> Market value of thermal management components in smartphones
Smartphone components and their role in thermal management 84
Processor 86
> Hardware and software improvements
> Single-core vs. multiple-core processor
> Comparative table of different processors
> Low efficient processor → additional thermal solutions needed
Packaging and PCB 92
> Smartphone as a driver for packaging development
> Packaging in smartphones: still little focus on thermal characteristics
> Benefits of fan-out packaging over other packages
> Comparison of different packaging technologies in smartphones
> Underfill
> PCB materials
> PCB and thermal management in smartphones
> PCB surface area in different smartphones – comparative graph
> Smartphone PCB main specifications
> PCB – how to improve thermal spreading capability?
Thermal sheet 108
Heat pipe and vapor chamber 112
> Advantages & inconvenience of using heat pipes in smartphones
> Heat pipes in smartphone - Timeline
> Heat pipe as thermal management improvement in Samsung Galaxy S7
> Comparison heat pipe & graphite thermal sheet
> Vapor chamber structure and principle
> Heat pipe vs. vapor chamber in smartphone applications
Battery 123
Smartphone enclosure 128
Other thermal management components 135
> Air fan/air blower
> Heat absorbent films/pads of Phase change materials
> Thermoelectric cooling
> Midframe
Software solutions for thermal management in smartphones 143
Technology trends 151
Wireless charging 164
Thermal characterization, simulation and testing 170
Supply chain 172
> Smartphone microprocessor and software management supply chain
> Packaging: Fan-out manufacturers
> Packaging: Fan-out supply chain
> Underfill players
> Heat pipes: who supplies who?
> Vapor chamber developers for smartphones
> Smartphone PCB suppliers
Conclusions 182

COMPANIES CITED IN THE REPORT (non exhaustive list)

AUTHORS
Dr. Milan Rosina is a Senior Analyst for Energy Conversion and Emerging Materials at Yole Développement. Before joining Yole, he worked as a Research Scientist and a Project Manager in the fields of photovoltaics, microelectronics, and LEDs. Dr. Rosina has more than 15 years of scientific and industrial experience with prominent research institutions, an equipment maker, and a utility company. His expertise includes new equipment and process development, due diligence, technology, and market surveys in the fields of renewable energy, energy storage, batteries, power electronics, thermal management and innovative materials and devices.

This report has been performed in collaboration with Mattin Grao Txapartegi and Jonathan Liao both analysts part of the Power Electronics, Compound Semiconductor and Energy Management team at Yole Développement.

RELATED REPORTS
Benefit from our Bundle & Annual Subscription offers and access our analyses at the best available price and with great advantages

• Status of Advanced Packaging industry 2017
• Advanced Substrate Overview: From IC Package to Board

Find this report here:
Find more details about this report here:
ORDER FORM

Market Opportunities for Thermal Management Components in Smartphones

BILL TO

Name (Mr/Ms/Drs/Pr): __

Job Title: __

Company: ___

Address: __

City: __

State: ___

Postcode/Zip: ___

Country*: __

*VAT ID Number for EU members:

Tel: __

Email: __

Date: __

PRODUCT ORDER - REF YDPE17051

Please enter my order for above named report:

☐ One user license*: Euro 5,490

☐ Multi user license: Euro 6,490

- The report will be ready for delivery from November 29, 2017
- For price in dollars, please use the day’s exchange rate. All reports are delivered electronically at payment reception. For French customers, add 20% for VAT

I hereby accept Yole Développement’s Terms and Conditions of Sale(1)

Signature: __

*One user license means only one person at the company can use the report.

PAYMENT

BY CREDIT CARD

☐ Visa ☐ Mastercard ☐ Amex

Name of the Card Holder: __

Credit Card Number: __

Card Verification Value (3 digits except AMEX: 4 digits): ____________

Expiration date: ______________________________

BY BANK TRANSFER

BANK INFO: HSBC, 1 place de la Bourse, F-69002 Lyon, France,
Bank code: 30056, Branch code: 00170
Account No: 0170 200 1565 87,
SWIFT or BIC code: CCFRFRPP
IBAN: FR76 3005 6001 7001 7020 0156 587

RETURN ORDER BY

• FAX: +33 (0)472 83 01 83

• MAIL: YOLE DEVELOPPEMENT, Le Quartz,
75 Cours Emile Zola, 69100 Villeurbanne/Lyon - France

SALES CONTACTS

• North America - Steve Laferriere: +1310 600 08 267
laferriere@yole.fr

• Europe & RoW - Lizzie Levenez: + 49 15 123 544 182
levenez@yole.fr

• Japan & Rest of Asia - Takashi Onozawa: +81 3 6869 6970
onozawa@yole.fr

• Greater China - Mavis Wang: +886 979 336 809
wang@yole.fr

• Specific inquiries: +33 472 830 180 – info@yole.fr

(1) Our Terms and Conditions of Sale are available at www.yole.fr/Terms_and_Conditions_of_Sale.aspx

The present document is valid 24 months after its publishing date:
November 20, 2017

ABOUT YOLE DEVELOPPEMENT

Founded in 1998, Yole Développement has grown to become a group of companies providing marketing, technology and strategy consulting, media and corporate finance services, reverse engineering and reverse costing services and well as IP and patent analysis. With a strong focus on emerging applications using silicon and/or micro manufacturing, the Yole group of companies has expanded to include more than 80 collaborators worldwide covering MEMS and image sensors, Compound Semiconductors, RF Electronics, Solid-state lighting, Displays, software, Optoelectronics, Microfluidics & Medical, Advanced Packaging, Manufacturing, Nanomaterials, Power Electronics and Batteries & Energy Management.

The “More than Moore” market research, technology and strategy consulting company Yole Développement, along with its partners System Plus Consulting, PISEO and KnowMade, support industrial companies, investors and R&D organizations worldwide to help them understand markets and follow technology trends to grow their business.

CONSULTING AND ANALYSIS
• Market data & research, marketing analysis
• Technology analysis
• Strategy consulting
• Reverse engineering & costing
• Patent analysis
• Design and characterization of innovative optical systems
• Financial services (due diligence, M&A with our partner)
More information on www.yole.fr

MEDIA & EVENTS
• i-Micronews.com website and related @Micronews e-newsletter
• Communication & webcast services
• Events: TechDays, forums,…
More information on www.i-micronews.com

REPORTS
• Market & technology reports
• Patent investigation and patent infringement risk analysis
• Teardowns & reverse costing analysis
• Cost simulation tool
More information on www.i-micronews.com/reports

CONTACTS
For more information about:
• Consulting & Financial Services: Jean-Christophe Eloy (eloy@yole.fr)
• Reports: David Jourdan (jourdan@yole.fr) Yole Group of Companies
• Press Relations & Corporate Communication: Sandrine Leroy (leroy@yole.fr)